Blog Archive

Friday, August 8, 2008

The Basics

Prototypes developed by Lucent and IBM differ slightly, but most holographic data storage systems (HDSS) are based on the same concept. Here are the basic components that are needed to construct an HDSS:
  • Blue-green argon laser
  • Beam splitters to spilt the laser beam
  • Mirrors to direct the laser beams
  • LCD panel (spatial light modulator)
  • Lenses to focus the laser beams
  • Lithium-niobate crystal or photopolymer
  • Charge-coupled device (CCD) camera
When the blue-green argon laser is fired, a beam splitter creates two beams. One beam, called the object or signal beam, will go straight, bounce off one mirror and travel through a spatial-light modulator (SLM). An SLM is a liquid crystal display (LCD) that shows pages of raw binary data as clear and dark boxes. The information from the page of binary code is carried by the signal beam around to the light-sensitive lithium-niobate crystal. Some systems use a photopolymer in place of the crystal. A second beam, called the reference beam, shoots out the side of the beam splitter and takes a separate path to the crystal. When the two beams meet, the interference pattern that is created stores the data carried by the signal beam in a specific area in the crystal -- the data is stored as a hologram.



Images courtesy Lucent Technologies
These two diagrams show how information is stored and retrieved in a holographic data storage system.

An advantage of a holographic memory system is that an entire page of data can be retrieved quickly and at one time. In order to retrieve and reconstruct the holographic page of data stored in the crystal, the reference beam is shined into the crystal at exactly the same angle at which it entered to store that page of data. Each page of data is stored in a different area of the crystal, based on the angle at which the reference beam strikes it. During reconstruction, the beam will be diffracted by the crystal to allow the recreation of the original page that was stored. This reconstructed page is then projected onto the charge-coupled device (CCD) camera, which interprets and forwards the digital information to a computer.

The key component of any holographic data storage system is the angle at which the second reference beam is fired at the crystal to retrieve a page of data. It must match the original reference beam angle exactly. A difference of just a thousandth of a millimeter will result in failure to retrieve that page of data.

No comments: